Feynman-kac Formulas for Black-scholes Type Operators
نویسندگان
چکیده
There are many references showing that a classical solution to the Black–Scholes equation is a stochastic solution. However, it is the converse of this theorem which is most relevant in applications and the converse is also more mathematically interesting. In the present article we establish such a converse. We find a Feynman–Kac type theorem showing that the stochastic representation yields a classical solution to the corresponding Black–Scholes equation with appropriate boundary conditions under very general conditions on the coefficients. We also obtain additional regularity results in the one-dimensional case.
منابع مشابه
Black-scholes and the Volatility Surface
When we studied discrete-time models we used martingale pricing to derive the Black-Scholes formula for European options. It was clear, however, that we could also have used a replicating strategy argument to derive the formula. In this part of the course, we will use the replicating strategy argument in continuous time to derive the Black-Scholes partial differential equation. We will use this...
متن کاملOptimal Investment and Consumption in a Black–scholes Market with Lévy-driven Stochastic Coefficients
In this paper, we investigate an optimal investment and consumption problem for an investor who trades in a Black–Scholes financial market with stochastic coefficients driven by a non-Gaussian Ornstein–Uhlenbeck process. We assume that an agent makes investment and consumption decisions based on a power utility function. By applying the usual separation method in the variables, we are faced wit...
متن کاملFeynman-kac Formulas, Backward Stochastic Differential Equations and Markov Processes
In this paper we explain the notion of stochastic backward differential equations and its relationship with classical (backward) parabolic differential equations of second order. The paper contains a mixture of stochastic processes like Markov processes and martingale theory and semi-linear partial differential equations of parabolic type. Some emphasis is put on the fact that the whole theory ...
متن کاملFirst Order Feynman-Kac Formula
We study the parabolic integral kernel associated with the weighted Laplacian with a potential. For manifold with a pole we deduce formulas and estimates for the derivatives of the Feynman-Kac kernels and their logarithms, these are in terms of a ‘Gaussian’ term and the semi-classical bridge. Assumptions are on the Riemannian data. AMS Mathematics Subject Classification : 60Gxx, 60Hxx, 58J65, 5...
متن کاملA Feynman-Kac Formula for Unbounded Semigroups
We prove a Feynman-Kac formula for Schrödinger operators with potentials V (x) that obey (for all ε > 0) V (x) ≥ −ε|x| − Cε. Even though e is an unbounded operator, any φ, ψ ∈ L with compact support lie in D(e) and 〈φ, eψ〉 is given by a Feynman-Kac formula.
متن کامل